Module hebi.compiler
Expand source code
import logging
from logging import getLogger
from ast import fix_missing_locations
from .optimize.optimize_remove_comments import OptimizeRemoveDeadconstants
from .rewrite.rewrite_forbidden_overwrites import RewriteForbiddenOverwrites
from .rewrite.rewrite_guaranteed_variables import RewriteGuaranteedVariables
from .rewrite.rewrite_import import RewriteImport
from .rewrite.rewrite_import_dataclasses import RewriteImportDataclasses
from .rewrite.rewrite_import_hashlib import RewriteImportHashlib
from .rewrite.rewrite_import_plutusdata import RewriteImportPlutusData
from .rewrite.rewrite_import_typing import RewriteImportTyping
from .rewrite.rewrite_inject_builtins import RewriteInjectBuiltins
from .rewrite.rewrite_inject_builtin_constr import RewriteInjectBuiltinsConstr
from .rewrite.rewrite_remove_type_stuff import RewriteRemoveTypeStuff
from .rewrite.rewrite_subscript38 import RewriteSubscript38
from .rewrite.rewrite_tuple_assign import RewriteTupleAssign
from .rewrite.rewrite_duplicate_assignment import RewriteDuplicateAssignment
from .rewrite.rewrite_zero_ary import RewriteZeroAry
from .optimize.optimize_remove_pass import OptimizeRemovePass
from .optimize.optimize_remove_deadvars import OptimizeRemoveDeadvars
from .type_inference import *
from .util import CompilingNodeTransformer, PowImpl
from .typed_ast import transform_ext_params_map, transform_output_map, RawPlutoExpr
_LOGGER = logging.getLogger(__name__)
BinOpMap = {
Add: {
IntegerInstanceType: {
IntegerInstanceType: plt.AddInteger,
},
ByteStringInstanceType: {
ByteStringInstanceType: plt.AppendByteString,
},
StringInstanceType: {
StringInstanceType: plt.AppendString,
},
},
Sub: {
IntegerInstanceType: {
IntegerInstanceType: plt.SubtractInteger,
}
},
Mult: {
IntegerInstanceType: {
IntegerInstanceType: plt.MultiplyInteger,
}
},
FloorDiv: {
IntegerInstanceType: {
IntegerInstanceType: plt.DivideInteger,
}
},
Mod: {
IntegerInstanceType: {
IntegerInstanceType: plt.ModInteger,
}
},
Pow: {
IntegerInstanceType: {
IntegerInstanceType: lambda x, y: plt.Apply(plt.RecFun(PowImpl), x, y),
}
},
}
BoolOpMap = {
And: plt.And,
Or: plt.Or,
}
UnaryOpMap = {
Not: {BoolInstanceType: plt.Not},
USub: {IntegerInstanceType: lambda x: plt.SubtractInteger(plt.Integer(0), x)},
}
ConstantMap = {
str: plt.Text,
bytes: lambda x: plt.ByteString(x),
int: lambda x: plt.Integer(x),
bool: plt.Bool,
type(None): lambda _: plt.Unit(),
}
def wrap_validator_double_function(x: plt.AST, pass_through: int = 0):
"""
Wraps the validator function to enable a double function as minting script
pass_through defines how many parameters x would normally take and should be passed through to x
"""
return plt.Lambda(
[f"v{i}" for i in range(pass_through)] + ["a0", "a1"],
plt.Let(
[("p", plt.Apply(x, *(plt.Var(f"v{i}") for i in range(pass_through))))],
plt.Ite(
# if the second argument has constructor 0 = script context
plt.DelayedChooseData(
plt.Var("a1"),
plt.EqualsInteger(plt.Constructor(plt.Var("a1")), plt.Integer(0)),
plt.Bool(False),
plt.Bool(False),
plt.Bool(False),
plt.Bool(False),
),
# call the validator with a0, a1, and plug in Unit for data
plt.Apply(plt.Var("p"), plt.Unit(), plt.Var("a0"), plt.Var("a1")),
# else call the validator with a0, a1 and return (now partially bound)
plt.Apply(plt.Var("p"), plt.Var("a0"), plt.Var("a1")),
),
),
)
class UPLCCompiler(CompilingNodeTransformer):
"""
Expects a TypedAST and returns UPLC/Pluto like code
"""
step = "Compiling python statements to UPLC"
def __init__(self, force_three_params=False, validator_function_name="validator"):
self.force_three_params = force_three_params
self.validator_function_name = validator_function_name
def visit_sequence(
self, node_seq: typing.List[typedstmt]
) -> typing.Callable[[plt.AST], plt.AST]:
def g(s: plt.AST):
for n in reversed(node_seq):
compiled_stmt = self.visit(n)
s = compiled_stmt(s)
return s
return g
def visit_BinOp(self, node: TypedBinOp) -> plt.AST:
opmap = BinOpMap.get(type(node.op))
if opmap is None:
raise NotImplementedError(f"Operation {node.op} is not implemented")
opmap2 = opmap.get(node.left.typ)
if opmap2 is None:
raise NotImplementedError(
f"Operation {node.op} is not implemented for left type {node.left.typ}"
)
op = opmap2.get(node.right.typ)
if opmap2 is None:
raise NotImplementedError(
f"Operation {node.op} is not implemented for left type {node.left.typ} and right type {node.right.typ}"
)
return op(self.visit(node.left), self.visit(node.right))
def visit_BoolOp(self, node: TypedBoolOp) -> plt.AST:
op = BoolOpMap.get(type(node.op))
assert len(node.values) >= 2, "Need to compare at least to values"
ops = op(
self.visit(node.values[0]),
self.visit(node.values[1]),
)
for v in node.values[2:]:
ops = op(ops, self.visit(v))
return ops
def visit_UnaryOp(self, node: TypedUnaryOp) -> plt.AST:
opmap = UnaryOpMap.get(type(node.op))
assert opmap is not None, f"Operator {type(node.op)} is not supported"
op = opmap.get(node.operand.typ)
assert (
op is not None
), f"Operator {type(node.op)} is not supported for type {node.operand.typ}"
return op(self.visit(node.operand))
def visit_Compare(self, node: TypedCompare) -> plt.AST:
assert len(node.ops) == 1, "Only single comparisons are supported"
assert len(node.comparators) == 1, "Only single comparisons are supported"
cmpop = node.ops[0]
comparator = node.comparators[0].typ
op = node.left.typ.cmp(cmpop, comparator)
return plt.Apply(
op,
self.visit(node.left),
self.visit(node.comparators[0]),
)
def visit_Module(self, node: TypedModule) -> plt.AST:
# find main function
# TODO can use more sophisiticated procedure here i.e. functions marked by comment
main_fun: typing.Optional[InstanceType] = None
for s in node.body:
if isinstance(s, FunctionDef) and s.name == self.validator_function_name:
main_fun = s
assert (
main_fun is not None
), f"Could not find function named {self.validator_function_name}"
main_fun_typ: FunctionType = main_fun.typ.typ
assert isinstance(
main_fun_typ, FunctionType
), f"Variable named {self.validator_function_name} is not of type function"
# check if this is a contract written to double function
enable_double_func_mint_spend = False
if len(main_fun_typ.argtyps) >= 3 and self.force_three_params:
# check if is possible
second_last_arg = main_fun_typ.argtyps[-2]
assert isinstance(
second_last_arg, InstanceType
), "Can not pass Class into validator"
if isinstance(second_last_arg.typ, UnionType):
possible_types = second_last_arg.typ.typs
else:
possible_types = [second_last_arg.typ]
if any(isinstance(t, UnitType) for t in possible_types):
_LOGGER.warning(
"The redeemer is annotated to be 'None'. This value is usually encoded in PlutusData with constructor id 0 and no fields. If you want the script to double function as minting and spending script, annotate the second argument with 'NoRedeemer'."
)
enable_double_func_mint_spend = not any(
(isinstance(t, RecordType) and t.record.constructor == 0)
or isinstance(t, UnitType)
for t in possible_types
)
if not enable_double_func_mint_spend:
_LOGGER.warning(
"The second argument to the validator function potentially has constructor id 0. The validator will not be able to double function as minting script and spending script."
)
body = node.body + [
TypedReturn(
value=Name(
id=self.validator_function_name,
typ=InstanceType(main_fun_typ),
ctx=Load(),
),
typ=InstanceType(main_fun_typ),
)
]
validator = plt.Lambda(
[f"p{i}" for i, _ in enumerate(main_fun_typ.argtyps)],
transform_output_map(main_fun_typ.rettyp)(
plt.Let(
[
(
"val",
self.visit_sequence(body)(
plt.ConstrData(plt.Integer(0), plt.EmptyDataList())
),
),
],
plt.Apply(
plt.Var("val"),
plt.Var("val"),
*[
transform_ext_params_map(a)(plt.Var(f"p{i}"))
for i, a in enumerate(main_fun_typ.argtyps)
],
),
),
),
)
if enable_double_func_mint_spend:
validator = wrap_validator_double_function(
validator, pass_through=len(main_fun_typ.argtyps) - 3
)
elif self.force_three_params:
# Error if the double function is enforced but not possible
raise RuntimeError(
"The contract can not always detect if it was passed three or two parameters on-chain."
)
cp = plt.Program((1, 0, 0), validator)
return cp
def visit_Constant(self, node: TypedConstant) -> plt.AST:
plt_type = ConstantMap.get(type(node.value))
if plt_type is None:
raise NotImplementedError(
f"Constants of type {type(node.value)} are not supported"
)
return plt_type(node.value)
def visit_NoneType(self, _: typing.Optional[typing.Any]) -> plt.AST:
return plt.Unit()
def visit_Assign(self, node: TypedAssign) -> typing.Callable[[plt.AST], plt.AST]:
assert (
len(node.targets) == 1
), "Assignments to more than one variable not supported yet"
assert isinstance(
node.targets[0], Name
), "Assignments to other things then names are not supported"
compiled_e = self.visit(node.value)
varname = node.targets[0].id
return lambda x: plt.Let([(varname, compiled_e)], x)
def visit_AnnAssign(self, node: AnnAssign) -> typing.Callable[[plt.AST], plt.AST]:
assert isinstance(
node.target, Name
), "Assignments to other things than names are not supported"
assert isinstance(
node.target.typ, InstanceType
), "Can only assign instances to instances"
compiled_e = self.visit(node.value)
# (\{STATEMONAD} -> (\x -> if (x ==b {self.visit(node.targets[0])}) then ({compiled_e} {STATEMONAD}) else ({STATEMONAD} x)))
val = compiled_e
if isinstance(node.value.typ, InstanceType) and isinstance(
node.value.typ.typ, AnyType
):
# we need to map this as it will originate from PlutusData
# AnyType is the only type other than the builtin itself that can be cast to builtin values
val = transform_ext_params_map(node.target.typ)(val)
if isinstance(node.target.typ, InstanceType) and isinstance(
node.target.typ.typ, AnyType
):
# we need to map this back as it will be treated as PlutusData
# AnyType is the only type other than the builtin itself that can be cast to from builtin values
val = transform_output_map(node.value.typ)(val)
return lambda x: plt.Let([(node.target.id, val)], x)
def visit_Name(self, node: TypedName) -> plt.AST:
# depending on load or store context, return the value of the variable or its name
if not isinstance(node.ctx, Load):
raise NotImplementedError(f"Context {node.ctx} not supported")
if isinstance(node.typ, ClassType):
# if this is not an instance but a class, call the constructor
return node.typ.constr()
return plt.Var(node.id)
def visit_Expr(self, node: TypedExpr) -> typing.Callable[[plt.AST], plt.AST]:
# we exploit UPLCs eager evaluation here
# the expression is computed even though its value is eventually discarded
# Note this really only makes sense for Trace
# we use an invalid name here to avoid conflicts
return lambda x: plt.Apply(plt.Lambda(["0"], x), self.visit(node.value))
def visit_Call(self, node: TypedCall) -> plt.AST:
# compiled_args = " ".join(f"({self.visit(a)} {STATEMONAD})" for a in node.args)
# return rf"(\{STATEMONAD} -> ({self.visit(node.func)} {compiled_args})"
# TODO function is actually not of type polymorphic function type here anymore
if isinstance(node.func.typ, PolymorphicFunctionInstanceType):
# edge case for weird builtins that are polymorphic
func_plt = node.func.typ.polymorphic_function.impl_from_args(
node.func.typ.typ.argtyps
)
else:
func_plt = self.visit(node.func)
args = []
for a, t in zip(node.args, node.func.typ.typ.argtyps):
assert isinstance(t, InstanceType)
# pass in all arguments evaluated with the statemonad
a_int = self.visit(a)
if isinstance(t.typ, AnyType):
# if the function expects input of generic type data, wrap data before passing it inside
a_int = transform_output_map(a.typ)(a_int)
args.append(a_int)
return plt.Apply(
plt.RecFun(func_plt),
*args,
)
def visit_FunctionDef(
self, node: TypedFunctionDef
) -> typing.Callable[[plt.AST], plt.AST]:
body = node.body.copy()
# defaults to returning None if there is no return statement
if node.typ.typ.rettyp.typ == AnyType():
ret_val = plt.ConstrData(plt.Integer(0), plt.EmptyDataList())
else:
ret_val = plt.Unit()
compiled_body = self.visit_sequence(body)(ret_val)
return lambda x: plt.Let(
[
(
node.name,
plt.Lambda(
[node.name] + [a.arg for a in node.args.args],
compiled_body,
),
)
],
x,
)
def visit_If(self, node: TypedIf) -> typing.Callable[[plt.AST], plt.AST]:
return lambda x: plt.Ite(
self.visit(node.test),
self.visit_sequence(node.body)(x),
self.visit_sequence(node.orelse)(x),
)
def visit_Return(self, node: TypedReturn) -> typing.Callable[[plt.AST], plt.AST]:
# Throw away the term we were passed, this is going to be the last!
compiled_return = self.visit(node.value)
if isinstance(node.typ.typ, AnyType):
# if the function returns generic data, wrap the function return value
compiled_return = transform_output_map(node.value.typ)(compiled_return)
return lambda _: compiled_return
def visit_Pass(self, node: TypedPass) -> typing.Callable[[plt.AST], plt.AST]:
return lambda x: x
def visit_Subscript(self, node: TypedSubscript) -> plt.AST:
assert isinstance(
node.value.typ, InstanceType
), "Can only access elements of instances, not classes"
if isinstance(node.value.typ.typ, TupleType):
assert isinstance(
node.slice, Constant
), "Only constant index access for tuples is supported"
assert isinstance(
node.slice.value, int
), "Only constant index integer access for tuples is supported"
index = node.slice.value
if index < 0:
index += len(node.value.typ.typ.typs)
assert isinstance(node.ctx, Load), "Tuples are read-only"
return plt.FunctionalTupleAccess(
self.visit(node.value),
index,
len(node.value.typ.typ.typs),
)
if isinstance(node.value.typ.typ, PairType):
assert isinstance(
node.slice, Constant
), "Only constant index access for pairs is supported"
assert isinstance(
node.slice.value, int
), "Only constant index integer access for pairs is supported"
index = node.slice.value
if index < 0:
index += 2
assert isinstance(node.ctx, Load), "Pairs are read-only"
assert (
0 <= index < 2
), f"Pairs only have 2 elements, index should be 0 or 1, is {node.slice.value}"
member_func = plt.FstPair if index == 0 else plt.SndPair
# the content of pairs is always Data, so we need to unwrap
member_typ = node.typ
return transform_ext_params_map(member_typ)(
member_func(
self.visit(node.value),
),
)
if isinstance(node.value.typ.typ, ListType):
assert (
node.slice.typ == IntegerInstanceType
), "Only single element list index access supported"
return plt.Let(
[
("l", self.visit(node.value)),
(
"raw_i",
self.visit(node.slice),
),
(
"i",
plt.Ite(
plt.LessThanInteger(plt.Var("raw_i"), plt.Integer(0)),
plt.AddInteger(
plt.Var("raw_i"), plt.LengthList(plt.Var("l"))
),
plt.Var("raw_i"),
),
),
],
plt.IndexAccessList(plt.Var("l"), plt.Var("i")),
)
elif isinstance(node.value.typ.typ, DictType):
dict_typ = node.value.typ.typ
if not isinstance(node.slice, Slice):
return plt.Let(
[
(
"key",
self.visit(node.slice),
)
],
transform_ext_params_map(dict_typ.value_typ)(
plt.SndPair(
plt.FindList(
self.visit(node.value),
plt.Lambda(
["x"],
plt.EqualsData(
transform_output_map(dict_typ.key_typ)(
plt.Var("key")
),
plt.FstPair(plt.Var("x")),
),
),
plt.TraceError("KeyError"),
),
),
),
)
elif isinstance(node.value.typ.typ, ByteStringType):
if not isinstance(node.slice, Slice):
return plt.Let(
[
(
"bs",
self.visit(node.value),
),
(
"raw_ix",
self.visit(node.slice),
),
(
"ix",
plt.Ite(
plt.LessThanInteger(plt.Var("raw_ix"), plt.Integer(0)),
plt.AddInteger(
plt.Var("raw_ix"),
plt.LengthOfByteString(plt.Var("bs")),
),
plt.Var("raw_ix"),
),
),
],
plt.IndexByteString(plt.Var("bs"), plt.Var("ix")),
)
elif isinstance(node.slice, Slice):
return plt.Let(
[
(
"bs",
self.visit(node.value),
),
(
"raw_i",
self.visit(node.slice.lower),
),
(
"i",
plt.Ite(
plt.LessThanInteger(plt.Var("raw_i"), plt.Integer(0)),
plt.AddInteger(
plt.Var("raw_i"),
plt.LengthOfByteString(plt.Var("bs")),
),
plt.Var("raw_i"),
),
),
(
"raw_j",
self.visit(node.slice.upper),
),
(
"j",
plt.Ite(
plt.LessThanInteger(plt.Var("raw_j"), plt.Integer(0)),
plt.AddInteger(
plt.Var("raw_j"),
plt.LengthOfByteString(plt.Var("bs")),
),
plt.Var("raw_j"),
),
),
(
"drop",
plt.Ite(
plt.LessThanEqualsInteger(plt.Var("i"), plt.Integer(0)),
plt.Integer(0),
plt.Var("i"),
),
),
(
"take",
plt.SubtractInteger(plt.Var("j"), plt.Var("drop")),
),
],
plt.Ite(
plt.LessThanEqualsInteger(plt.Var("j"), plt.Var("i")),
plt.ByteString(b""),
plt.SliceByteString(
plt.Var("drop"),
plt.Var("take"),
plt.Var("bs"),
),
),
)
raise NotImplementedError(
f'Could not implement subscript "{node.slice}" of "{node.value}"'
)
def visit_Tuple(self, node: TypedTuple) -> plt.AST:
return plt.FunctionalTuple(*(self.visit(e) for e in node.elts))
def visit_ClassDef(
self, node: TypedClassDef
) -> typing.Callable[[plt.AST], plt.AST]:
return lambda x: plt.Let([(node.name, node.class_typ.constr())], x)
def visit_Attribute(self, node: TypedAttribute) -> plt.AST:
assert isinstance(
node.typ, InstanceType
), "Can only access attributes of instances"
obj = self.visit(node.value)
attr = node.value.typ.attribute(node.attr)
return plt.Apply(attr, obj)
def visit_Assert(self, node: TypedAssert) -> typing.Callable[[plt.AST], plt.AST]:
return lambda x: plt.Ite(
self.visit(node.test),
x,
plt.Apply(
plt.Error(),
plt.Trace(self.visit(node.msg), plt.Unit())
if node.msg is not None
else plt.Unit(),
),
)
def visit_RawPlutoExpr(self, node: RawPlutoExpr) -> plt.AST:
return node.expr
def visit_List(self, node: TypedList) -> plt.AST:
assert isinstance(node.typ, InstanceType)
assert isinstance(node.typ.typ, ListType)
l = empty_list(node.typ.typ.typ)
for e in reversed(node.elts):
l = plt.MkCons(self.visit(e), l)
return l
def visit_Dict(self, node: TypedDict) -> plt.AST:
assert isinstance(node.typ, InstanceType)
assert isinstance(node.typ.typ, DictType)
key_type = node.typ.typ.key_typ
value_type = node.typ.typ.value_typ
l = plt.EmptyDataPairList()
for k, v in zip(node.keys, node.values):
l = plt.MkCons(
plt.MkPairData(
transform_output_map(key_type)(self.visit(k)),
transform_output_map(value_type)(self.visit(v)),
),
l,
)
return l
def visit_IfExp(self, node: TypedIfExp) -> plt.AST:
return plt.Ite(
self.visit(node.test),
self.visit(node.body),
self.visit(node.orelse),
)
def visit_ListComp(self, node: TypedListComp) -> plt.AST:
assert len(node.generators) == 1, "Currently only one generator supported"
gen = node.generators[0]
assert isinstance(gen.iter.typ, InstanceType), "Only lists are valid generators"
assert isinstance(gen.iter.typ.typ, ListType), "Only lists are valid generators"
assert isinstance(
gen.target, Name
), "Can only assign value to singleton element"
lst = self.visit(gen.iter)
ifs = None
for ifexpr in gen.ifs:
if ifs is None:
ifs = self.visit(ifexpr)
else:
ifs = plt.And(ifs, self.visit(ifexpr))
map_fun = plt.Lambda(
[gen.target.id],
self.visit(node.elt),
)
empty_list_con = empty_list(node.elt.typ)
if ifs is not None:
filter_fun = plt.Lambda(
[gen.target.id],
ifs,
)
return plt.MapFilterList(
lst,
filter_fun,
map_fun,
empty_list_con,
)
else:
return plt.MapList(
lst,
map_fun,
empty_list_con,
)
def generic_visit(self, node: AST) -> plt.AST:
raise NotImplementedError(f"Can not compile {node}")
def compile(
prog: AST,
filename=None,
force_three_params=False,
validator_function_name="validator",
):
rewrite_steps = [
# Important to call this one first - it imports all further files
RewriteImport(filename=filename),
# Rewrites that simplify the python code
RewriteSubscript38(),
RewriteTupleAssign(),
RewriteImportPlutusData(),
RewriteImportHashlib(),
RewriteImportTyping(),
RewriteForbiddenOverwrites(),
RewriteImportDataclasses(),
RewriteInjectBuiltins(),
RewriteDuplicateAssignment(),
RewriteGuaranteedVariables(),
# The type inference needs to be run after complex python operations were rewritten
AggressiveTypeInferencer(),
# Rewrites that circumvent the type inference or use its results
RewriteZeroAry(),
RewriteInjectBuiltinsConstr(),
RewriteRemoveTypeStuff(),
]
for s in rewrite_steps:
prog = s.visit(prog)
prog = fix_missing_locations(prog)
# from here on raw uplc may occur, so we dont attempt to fix locations
compile_pipeline = [
# Apply optimizations
OptimizeRemoveDeadvars(),
OptimizeRemoveDeadconstants(),
OptimizeRemovePass(),
# the compiler runs last
UPLCCompiler(
force_three_params=force_three_params,
validator_function_name=validator_function_name,
),
]
for s in compile_pipeline:
prog = s.visit(prog)
return prog
Functions
def compile(prog: _ast.AST, filename=None, force_three_params=False, validator_function_name='validator')
-
Expand source code
def compile( prog: AST, filename=None, force_three_params=False, validator_function_name="validator", ): rewrite_steps = [ # Important to call this one first - it imports all further files RewriteImport(filename=filename), # Rewrites that simplify the python code RewriteSubscript38(), RewriteTupleAssign(), RewriteImportPlutusData(), RewriteImportHashlib(), RewriteImportTyping(), RewriteForbiddenOverwrites(), RewriteImportDataclasses(), RewriteInjectBuiltins(), RewriteDuplicateAssignment(), RewriteGuaranteedVariables(), # The type inference needs to be run after complex python operations were rewritten AggressiveTypeInferencer(), # Rewrites that circumvent the type inference or use its results RewriteZeroAry(), RewriteInjectBuiltinsConstr(), RewriteRemoveTypeStuff(), ] for s in rewrite_steps: prog = s.visit(prog) prog = fix_missing_locations(prog) # from here on raw uplc may occur, so we dont attempt to fix locations compile_pipeline = [ # Apply optimizations OptimizeRemoveDeadvars(), OptimizeRemoveDeadconstants(), OptimizeRemovePass(), # the compiler runs last UPLCCompiler( force_three_params=force_three_params, validator_function_name=validator_function_name, ), ] for s in compile_pipeline: prog = s.visit(prog) return prog
def wrap_validator_double_function(x: pluthon.pluthon_ast.AST, pass_through: int = 0)
-
Wraps the validator function to enable a double function as minting script
pass_through defines how many parameters x would normally take and should be passed through to x
Expand source code
def wrap_validator_double_function(x: plt.AST, pass_through: int = 0): """ Wraps the validator function to enable a double function as minting script pass_through defines how many parameters x would normally take and should be passed through to x """ return plt.Lambda( [f"v{i}" for i in range(pass_through)] + ["a0", "a1"], plt.Let( [("p", plt.Apply(x, *(plt.Var(f"v{i}") for i in range(pass_through))))], plt.Ite( # if the second argument has constructor 0 = script context plt.DelayedChooseData( plt.Var("a1"), plt.EqualsInteger(plt.Constructor(plt.Var("a1")), plt.Integer(0)), plt.Bool(False), plt.Bool(False), plt.Bool(False), plt.Bool(False), ), # call the validator with a0, a1, and plug in Unit for data plt.Apply(plt.Var("p"), plt.Unit(), plt.Var("a0"), plt.Var("a1")), # else call the validator with a0, a1 and return (now partially bound) plt.Apply(plt.Var("p"), plt.Var("a0"), plt.Var("a1")), ), ), )
Classes
class UPLCCompiler (force_three_params=False, validator_function_name='validator')
-
Expects a TypedAST and returns UPLC/Pluto like code
Expand source code
class UPLCCompiler(CompilingNodeTransformer): """ Expects a TypedAST and returns UPLC/Pluto like code """ step = "Compiling python statements to UPLC" def __init__(self, force_three_params=False, validator_function_name="validator"): self.force_three_params = force_three_params self.validator_function_name = validator_function_name def visit_sequence( self, node_seq: typing.List[typedstmt] ) -> typing.Callable[[plt.AST], plt.AST]: def g(s: plt.AST): for n in reversed(node_seq): compiled_stmt = self.visit(n) s = compiled_stmt(s) return s return g def visit_BinOp(self, node: TypedBinOp) -> plt.AST: opmap = BinOpMap.get(type(node.op)) if opmap is None: raise NotImplementedError(f"Operation {node.op} is not implemented") opmap2 = opmap.get(node.left.typ) if opmap2 is None: raise NotImplementedError( f"Operation {node.op} is not implemented for left type {node.left.typ}" ) op = opmap2.get(node.right.typ) if opmap2 is None: raise NotImplementedError( f"Operation {node.op} is not implemented for left type {node.left.typ} and right type {node.right.typ}" ) return op(self.visit(node.left), self.visit(node.right)) def visit_BoolOp(self, node: TypedBoolOp) -> plt.AST: op = BoolOpMap.get(type(node.op)) assert len(node.values) >= 2, "Need to compare at least to values" ops = op( self.visit(node.values[0]), self.visit(node.values[1]), ) for v in node.values[2:]: ops = op(ops, self.visit(v)) return ops def visit_UnaryOp(self, node: TypedUnaryOp) -> plt.AST: opmap = UnaryOpMap.get(type(node.op)) assert opmap is not None, f"Operator {type(node.op)} is not supported" op = opmap.get(node.operand.typ) assert ( op is not None ), f"Operator {type(node.op)} is not supported for type {node.operand.typ}" return op(self.visit(node.operand)) def visit_Compare(self, node: TypedCompare) -> plt.AST: assert len(node.ops) == 1, "Only single comparisons are supported" assert len(node.comparators) == 1, "Only single comparisons are supported" cmpop = node.ops[0] comparator = node.comparators[0].typ op = node.left.typ.cmp(cmpop, comparator) return plt.Apply( op, self.visit(node.left), self.visit(node.comparators[0]), ) def visit_Module(self, node: TypedModule) -> plt.AST: # find main function # TODO can use more sophisiticated procedure here i.e. functions marked by comment main_fun: typing.Optional[InstanceType] = None for s in node.body: if isinstance(s, FunctionDef) and s.name == self.validator_function_name: main_fun = s assert ( main_fun is not None ), f"Could not find function named {self.validator_function_name}" main_fun_typ: FunctionType = main_fun.typ.typ assert isinstance( main_fun_typ, FunctionType ), f"Variable named {self.validator_function_name} is not of type function" # check if this is a contract written to double function enable_double_func_mint_spend = False if len(main_fun_typ.argtyps) >= 3 and self.force_three_params: # check if is possible second_last_arg = main_fun_typ.argtyps[-2] assert isinstance( second_last_arg, InstanceType ), "Can not pass Class into validator" if isinstance(second_last_arg.typ, UnionType): possible_types = second_last_arg.typ.typs else: possible_types = [second_last_arg.typ] if any(isinstance(t, UnitType) for t in possible_types): _LOGGER.warning( "The redeemer is annotated to be 'None'. This value is usually encoded in PlutusData with constructor id 0 and no fields. If you want the script to double function as minting and spending script, annotate the second argument with 'NoRedeemer'." ) enable_double_func_mint_spend = not any( (isinstance(t, RecordType) and t.record.constructor == 0) or isinstance(t, UnitType) for t in possible_types ) if not enable_double_func_mint_spend: _LOGGER.warning( "The second argument to the validator function potentially has constructor id 0. The validator will not be able to double function as minting script and spending script." ) body = node.body + [ TypedReturn( value=Name( id=self.validator_function_name, typ=InstanceType(main_fun_typ), ctx=Load(), ), typ=InstanceType(main_fun_typ), ) ] validator = plt.Lambda( [f"p{i}" for i, _ in enumerate(main_fun_typ.argtyps)], transform_output_map(main_fun_typ.rettyp)( plt.Let( [ ( "val", self.visit_sequence(body)( plt.ConstrData(plt.Integer(0), plt.EmptyDataList()) ), ), ], plt.Apply( plt.Var("val"), plt.Var("val"), *[ transform_ext_params_map(a)(plt.Var(f"p{i}")) for i, a in enumerate(main_fun_typ.argtyps) ], ), ), ), ) if enable_double_func_mint_spend: validator = wrap_validator_double_function( validator, pass_through=len(main_fun_typ.argtyps) - 3 ) elif self.force_three_params: # Error if the double function is enforced but not possible raise RuntimeError( "The contract can not always detect if it was passed three or two parameters on-chain." ) cp = plt.Program((1, 0, 0), validator) return cp def visit_Constant(self, node: TypedConstant) -> plt.AST: plt_type = ConstantMap.get(type(node.value)) if plt_type is None: raise NotImplementedError( f"Constants of type {type(node.value)} are not supported" ) return plt_type(node.value) def visit_NoneType(self, _: typing.Optional[typing.Any]) -> plt.AST: return plt.Unit() def visit_Assign(self, node: TypedAssign) -> typing.Callable[[plt.AST], plt.AST]: assert ( len(node.targets) == 1 ), "Assignments to more than one variable not supported yet" assert isinstance( node.targets[0], Name ), "Assignments to other things then names are not supported" compiled_e = self.visit(node.value) varname = node.targets[0].id return lambda x: plt.Let([(varname, compiled_e)], x) def visit_AnnAssign(self, node: AnnAssign) -> typing.Callable[[plt.AST], plt.AST]: assert isinstance( node.target, Name ), "Assignments to other things than names are not supported" assert isinstance( node.target.typ, InstanceType ), "Can only assign instances to instances" compiled_e = self.visit(node.value) # (\{STATEMONAD} -> (\x -> if (x ==b {self.visit(node.targets[0])}) then ({compiled_e} {STATEMONAD}) else ({STATEMONAD} x))) val = compiled_e if isinstance(node.value.typ, InstanceType) and isinstance( node.value.typ.typ, AnyType ): # we need to map this as it will originate from PlutusData # AnyType is the only type other than the builtin itself that can be cast to builtin values val = transform_ext_params_map(node.target.typ)(val) if isinstance(node.target.typ, InstanceType) and isinstance( node.target.typ.typ, AnyType ): # we need to map this back as it will be treated as PlutusData # AnyType is the only type other than the builtin itself that can be cast to from builtin values val = transform_output_map(node.value.typ)(val) return lambda x: plt.Let([(node.target.id, val)], x) def visit_Name(self, node: TypedName) -> plt.AST: # depending on load or store context, return the value of the variable or its name if not isinstance(node.ctx, Load): raise NotImplementedError(f"Context {node.ctx} not supported") if isinstance(node.typ, ClassType): # if this is not an instance but a class, call the constructor return node.typ.constr() return plt.Var(node.id) def visit_Expr(self, node: TypedExpr) -> typing.Callable[[plt.AST], plt.AST]: # we exploit UPLCs eager evaluation here # the expression is computed even though its value is eventually discarded # Note this really only makes sense for Trace # we use an invalid name here to avoid conflicts return lambda x: plt.Apply(plt.Lambda(["0"], x), self.visit(node.value)) def visit_Call(self, node: TypedCall) -> plt.AST: # compiled_args = " ".join(f"({self.visit(a)} {STATEMONAD})" for a in node.args) # return rf"(\{STATEMONAD} -> ({self.visit(node.func)} {compiled_args})" # TODO function is actually not of type polymorphic function type here anymore if isinstance(node.func.typ, PolymorphicFunctionInstanceType): # edge case for weird builtins that are polymorphic func_plt = node.func.typ.polymorphic_function.impl_from_args( node.func.typ.typ.argtyps ) else: func_plt = self.visit(node.func) args = [] for a, t in zip(node.args, node.func.typ.typ.argtyps): assert isinstance(t, InstanceType) # pass in all arguments evaluated with the statemonad a_int = self.visit(a) if isinstance(t.typ, AnyType): # if the function expects input of generic type data, wrap data before passing it inside a_int = transform_output_map(a.typ)(a_int) args.append(a_int) return plt.Apply( plt.RecFun(func_plt), *args, ) def visit_FunctionDef( self, node: TypedFunctionDef ) -> typing.Callable[[plt.AST], plt.AST]: body = node.body.copy() # defaults to returning None if there is no return statement if node.typ.typ.rettyp.typ == AnyType(): ret_val = plt.ConstrData(plt.Integer(0), plt.EmptyDataList()) else: ret_val = plt.Unit() compiled_body = self.visit_sequence(body)(ret_val) return lambda x: plt.Let( [ ( node.name, plt.Lambda( [node.name] + [a.arg for a in node.args.args], compiled_body, ), ) ], x, ) def visit_If(self, node: TypedIf) -> typing.Callable[[plt.AST], plt.AST]: return lambda x: plt.Ite( self.visit(node.test), self.visit_sequence(node.body)(x), self.visit_sequence(node.orelse)(x), ) def visit_Return(self, node: TypedReturn) -> typing.Callable[[plt.AST], plt.AST]: # Throw away the term we were passed, this is going to be the last! compiled_return = self.visit(node.value) if isinstance(node.typ.typ, AnyType): # if the function returns generic data, wrap the function return value compiled_return = transform_output_map(node.value.typ)(compiled_return) return lambda _: compiled_return def visit_Pass(self, node: TypedPass) -> typing.Callable[[plt.AST], plt.AST]: return lambda x: x def visit_Subscript(self, node: TypedSubscript) -> plt.AST: assert isinstance( node.value.typ, InstanceType ), "Can only access elements of instances, not classes" if isinstance(node.value.typ.typ, TupleType): assert isinstance( node.slice, Constant ), "Only constant index access for tuples is supported" assert isinstance( node.slice.value, int ), "Only constant index integer access for tuples is supported" index = node.slice.value if index < 0: index += len(node.value.typ.typ.typs) assert isinstance(node.ctx, Load), "Tuples are read-only" return plt.FunctionalTupleAccess( self.visit(node.value), index, len(node.value.typ.typ.typs), ) if isinstance(node.value.typ.typ, PairType): assert isinstance( node.slice, Constant ), "Only constant index access for pairs is supported" assert isinstance( node.slice.value, int ), "Only constant index integer access for pairs is supported" index = node.slice.value if index < 0: index += 2 assert isinstance(node.ctx, Load), "Pairs are read-only" assert ( 0 <= index < 2 ), f"Pairs only have 2 elements, index should be 0 or 1, is {node.slice.value}" member_func = plt.FstPair if index == 0 else plt.SndPair # the content of pairs is always Data, so we need to unwrap member_typ = node.typ return transform_ext_params_map(member_typ)( member_func( self.visit(node.value), ), ) if isinstance(node.value.typ.typ, ListType): assert ( node.slice.typ == IntegerInstanceType ), "Only single element list index access supported" return plt.Let( [ ("l", self.visit(node.value)), ( "raw_i", self.visit(node.slice), ), ( "i", plt.Ite( plt.LessThanInteger(plt.Var("raw_i"), plt.Integer(0)), plt.AddInteger( plt.Var("raw_i"), plt.LengthList(plt.Var("l")) ), plt.Var("raw_i"), ), ), ], plt.IndexAccessList(plt.Var("l"), plt.Var("i")), ) elif isinstance(node.value.typ.typ, DictType): dict_typ = node.value.typ.typ if not isinstance(node.slice, Slice): return plt.Let( [ ( "key", self.visit(node.slice), ) ], transform_ext_params_map(dict_typ.value_typ)( plt.SndPair( plt.FindList( self.visit(node.value), plt.Lambda( ["x"], plt.EqualsData( transform_output_map(dict_typ.key_typ)( plt.Var("key") ), plt.FstPair(plt.Var("x")), ), ), plt.TraceError("KeyError"), ), ), ), ) elif isinstance(node.value.typ.typ, ByteStringType): if not isinstance(node.slice, Slice): return plt.Let( [ ( "bs", self.visit(node.value), ), ( "raw_ix", self.visit(node.slice), ), ( "ix", plt.Ite( plt.LessThanInteger(plt.Var("raw_ix"), plt.Integer(0)), plt.AddInteger( plt.Var("raw_ix"), plt.LengthOfByteString(plt.Var("bs")), ), plt.Var("raw_ix"), ), ), ], plt.IndexByteString(plt.Var("bs"), plt.Var("ix")), ) elif isinstance(node.slice, Slice): return plt.Let( [ ( "bs", self.visit(node.value), ), ( "raw_i", self.visit(node.slice.lower), ), ( "i", plt.Ite( plt.LessThanInteger(plt.Var("raw_i"), plt.Integer(0)), plt.AddInteger( plt.Var("raw_i"), plt.LengthOfByteString(plt.Var("bs")), ), plt.Var("raw_i"), ), ), ( "raw_j", self.visit(node.slice.upper), ), ( "j", plt.Ite( plt.LessThanInteger(plt.Var("raw_j"), plt.Integer(0)), plt.AddInteger( plt.Var("raw_j"), plt.LengthOfByteString(plt.Var("bs")), ), plt.Var("raw_j"), ), ), ( "drop", plt.Ite( plt.LessThanEqualsInteger(plt.Var("i"), plt.Integer(0)), plt.Integer(0), plt.Var("i"), ), ), ( "take", plt.SubtractInteger(plt.Var("j"), plt.Var("drop")), ), ], plt.Ite( plt.LessThanEqualsInteger(plt.Var("j"), plt.Var("i")), plt.ByteString(b""), plt.SliceByteString( plt.Var("drop"), plt.Var("take"), plt.Var("bs"), ), ), ) raise NotImplementedError( f'Could not implement subscript "{node.slice}" of "{node.value}"' ) def visit_Tuple(self, node: TypedTuple) -> plt.AST: return plt.FunctionalTuple(*(self.visit(e) for e in node.elts)) def visit_ClassDef( self, node: TypedClassDef ) -> typing.Callable[[plt.AST], plt.AST]: return lambda x: plt.Let([(node.name, node.class_typ.constr())], x) def visit_Attribute(self, node: TypedAttribute) -> plt.AST: assert isinstance( node.typ, InstanceType ), "Can only access attributes of instances" obj = self.visit(node.value) attr = node.value.typ.attribute(node.attr) return plt.Apply(attr, obj) def visit_Assert(self, node: TypedAssert) -> typing.Callable[[plt.AST], plt.AST]: return lambda x: plt.Ite( self.visit(node.test), x, plt.Apply( plt.Error(), plt.Trace(self.visit(node.msg), plt.Unit()) if node.msg is not None else plt.Unit(), ), ) def visit_RawPlutoExpr(self, node: RawPlutoExpr) -> plt.AST: return node.expr def visit_List(self, node: TypedList) -> plt.AST: assert isinstance(node.typ, InstanceType) assert isinstance(node.typ.typ, ListType) l = empty_list(node.typ.typ.typ) for e in reversed(node.elts): l = plt.MkCons(self.visit(e), l) return l def visit_Dict(self, node: TypedDict) -> plt.AST: assert isinstance(node.typ, InstanceType) assert isinstance(node.typ.typ, DictType) key_type = node.typ.typ.key_typ value_type = node.typ.typ.value_typ l = plt.EmptyDataPairList() for k, v in zip(node.keys, node.values): l = plt.MkCons( plt.MkPairData( transform_output_map(key_type)(self.visit(k)), transform_output_map(value_type)(self.visit(v)), ), l, ) return l def visit_IfExp(self, node: TypedIfExp) -> plt.AST: return plt.Ite( self.visit(node.test), self.visit(node.body), self.visit(node.orelse), ) def visit_ListComp(self, node: TypedListComp) -> plt.AST: assert len(node.generators) == 1, "Currently only one generator supported" gen = node.generators[0] assert isinstance(gen.iter.typ, InstanceType), "Only lists are valid generators" assert isinstance(gen.iter.typ.typ, ListType), "Only lists are valid generators" assert isinstance( gen.target, Name ), "Can only assign value to singleton element" lst = self.visit(gen.iter) ifs = None for ifexpr in gen.ifs: if ifs is None: ifs = self.visit(ifexpr) else: ifs = plt.And(ifs, self.visit(ifexpr)) map_fun = plt.Lambda( [gen.target.id], self.visit(node.elt), ) empty_list_con = empty_list(node.elt.typ) if ifs is not None: filter_fun = plt.Lambda( [gen.target.id], ifs, ) return plt.MapFilterList( lst, filter_fun, map_fun, empty_list_con, ) else: return plt.MapList( lst, map_fun, empty_list_con, ) def generic_visit(self, node: AST) -> plt.AST: raise NotImplementedError(f"Can not compile {node}")
Ancestors
- CompilingNodeTransformer
- TypedNodeTransformer
- ast.NodeTransformer
- ast.NodeVisitor
Class variables
var step
Methods
def generic_visit(self, node: _ast.AST) ‑> pluthon.pluthon_ast.AST
-
Called if no explicit visitor function exists for a node.
Expand source code
def generic_visit(self, node: AST) -> plt.AST: raise NotImplementedError(f"Can not compile {node}")
def visit(self, node)
-
Inherited from:
CompilingNodeTransformer
.visit
Visit a node.
def visit_AnnAssign(self, node: _ast.AnnAssign) ‑> Callable[[pluthon.pluthon_ast.AST], pluthon.pluthon_ast.AST]
-
Expand source code
def visit_AnnAssign(self, node: AnnAssign) -> typing.Callable[[plt.AST], plt.AST]: assert isinstance( node.target, Name ), "Assignments to other things than names are not supported" assert isinstance( node.target.typ, InstanceType ), "Can only assign instances to instances" compiled_e = self.visit(node.value) # (\{STATEMONAD} -> (\x -> if (x ==b {self.visit(node.targets[0])}) then ({compiled_e} {STATEMONAD}) else ({STATEMONAD} x))) val = compiled_e if isinstance(node.value.typ, InstanceType) and isinstance( node.value.typ.typ, AnyType ): # we need to map this as it will originate from PlutusData # AnyType is the only type other than the builtin itself that can be cast to builtin values val = transform_ext_params_map(node.target.typ)(val) if isinstance(node.target.typ, InstanceType) and isinstance( node.target.typ.typ, AnyType ): # we need to map this back as it will be treated as PlutusData # AnyType is the only type other than the builtin itself that can be cast to from builtin values val = transform_output_map(node.value.typ)(val) return lambda x: plt.Let([(node.target.id, val)], x)
def visit_Assert(self, node: TypedAssert) ‑> Callable[[pluthon.pluthon_ast.AST], pluthon.pluthon_ast.AST]
-
Expand source code
def visit_Assert(self, node: TypedAssert) -> typing.Callable[[plt.AST], plt.AST]: return lambda x: plt.Ite( self.visit(node.test), x, plt.Apply( plt.Error(), plt.Trace(self.visit(node.msg), plt.Unit()) if node.msg is not None else plt.Unit(), ), )
def visit_Assign(self, node: TypedAssign) ‑> Callable[[pluthon.pluthon_ast.AST], pluthon.pluthon_ast.AST]
-
Expand source code
def visit_Assign(self, node: TypedAssign) -> typing.Callable[[plt.AST], plt.AST]: assert ( len(node.targets) == 1 ), "Assignments to more than one variable not supported yet" assert isinstance( node.targets[0], Name ), "Assignments to other things then names are not supported" compiled_e = self.visit(node.value) varname = node.targets[0].id return lambda x: plt.Let([(varname, compiled_e)], x)
def visit_Attribute(self, node: TypedAttribute) ‑> pluthon.pluthon_ast.AST
-
Expand source code
def visit_Attribute(self, node: TypedAttribute) -> plt.AST: assert isinstance( node.typ, InstanceType ), "Can only access attributes of instances" obj = self.visit(node.value) attr = node.value.typ.attribute(node.attr) return plt.Apply(attr, obj)
def visit_BinOp(self, node: TypedBinOp) ‑> pluthon.pluthon_ast.AST
-
Expand source code
def visit_BinOp(self, node: TypedBinOp) -> plt.AST: opmap = BinOpMap.get(type(node.op)) if opmap is None: raise NotImplementedError(f"Operation {node.op} is not implemented") opmap2 = opmap.get(node.left.typ) if opmap2 is None: raise NotImplementedError( f"Operation {node.op} is not implemented for left type {node.left.typ}" ) op = opmap2.get(node.right.typ) if opmap2 is None: raise NotImplementedError( f"Operation {node.op} is not implemented for left type {node.left.typ} and right type {node.right.typ}" ) return op(self.visit(node.left), self.visit(node.right))
def visit_BoolOp(self, node: TypedBoolOp) ‑> pluthon.pluthon_ast.AST
-
Expand source code
def visit_BoolOp(self, node: TypedBoolOp) -> plt.AST: op = BoolOpMap.get(type(node.op)) assert len(node.values) >= 2, "Need to compare at least to values" ops = op( self.visit(node.values[0]), self.visit(node.values[1]), ) for v in node.values[2:]: ops = op(ops, self.visit(v)) return ops
def visit_Call(self, node: TypedCall) ‑> pluthon.pluthon_ast.AST
-
Expand source code
def visit_Call(self, node: TypedCall) -> plt.AST: # compiled_args = " ".join(f"({self.visit(a)} {STATEMONAD})" for a in node.args) # return rf"(\{STATEMONAD} -> ({self.visit(node.func)} {compiled_args})" # TODO function is actually not of type polymorphic function type here anymore if isinstance(node.func.typ, PolymorphicFunctionInstanceType): # edge case for weird builtins that are polymorphic func_plt = node.func.typ.polymorphic_function.impl_from_args( node.func.typ.typ.argtyps ) else: func_plt = self.visit(node.func) args = [] for a, t in zip(node.args, node.func.typ.typ.argtyps): assert isinstance(t, InstanceType) # pass in all arguments evaluated with the statemonad a_int = self.visit(a) if isinstance(t.typ, AnyType): # if the function expects input of generic type data, wrap data before passing it inside a_int = transform_output_map(a.typ)(a_int) args.append(a_int) return plt.Apply( plt.RecFun(func_plt), *args, )
def visit_ClassDef(self, node: TypedClassDef) ‑> Callable[[pluthon.pluthon_ast.AST], pluthon.pluthon_ast.AST]
-
Expand source code
def visit_ClassDef( self, node: TypedClassDef ) -> typing.Callable[[plt.AST], plt.AST]: return lambda x: plt.Let([(node.name, node.class_typ.constr())], x)
def visit_Compare(self, node: TypedCompare) ‑> pluthon.pluthon_ast.AST
-
Expand source code
def visit_Compare(self, node: TypedCompare) -> plt.AST: assert len(node.ops) == 1, "Only single comparisons are supported" assert len(node.comparators) == 1, "Only single comparisons are supported" cmpop = node.ops[0] comparator = node.comparators[0].typ op = node.left.typ.cmp(cmpop, comparator) return plt.Apply( op, self.visit(node.left), self.visit(node.comparators[0]), )
def visit_Constant(self, node: TypedConstant) ‑> pluthon.pluthon_ast.AST
-
Expand source code
def visit_Constant(self, node: TypedConstant) -> plt.AST: plt_type = ConstantMap.get(type(node.value)) if plt_type is None: raise NotImplementedError( f"Constants of type {type(node.value)} are not supported" ) return plt_type(node.value)
def visit_Dict(self, node: TypedDict) ‑> pluthon.pluthon_ast.AST
-
Expand source code
def visit_Dict(self, node: TypedDict) -> plt.AST: assert isinstance(node.typ, InstanceType) assert isinstance(node.typ.typ, DictType) key_type = node.typ.typ.key_typ value_type = node.typ.typ.value_typ l = plt.EmptyDataPairList() for k, v in zip(node.keys, node.values): l = plt.MkCons( plt.MkPairData( transform_output_map(key_type)(self.visit(k)), transform_output_map(value_type)(self.visit(v)), ), l, ) return l
def visit_Expr(self, node: TypedExpr) ‑> Callable[[pluthon.pluthon_ast.AST], pluthon.pluthon_ast.AST]
-
Expand source code
def visit_Expr(self, node: TypedExpr) -> typing.Callable[[plt.AST], plt.AST]: # we exploit UPLCs eager evaluation here # the expression is computed even though its value is eventually discarded # Note this really only makes sense for Trace # we use an invalid name here to avoid conflicts return lambda x: plt.Apply(plt.Lambda(["0"], x), self.visit(node.value))
def visit_FunctionDef(self, node: TypedFunctionDef) ‑> Callable[[pluthon.pluthon_ast.AST], pluthon.pluthon_ast.AST]
-
Expand source code
def visit_FunctionDef( self, node: TypedFunctionDef ) -> typing.Callable[[plt.AST], plt.AST]: body = node.body.copy() # defaults to returning None if there is no return statement if node.typ.typ.rettyp.typ == AnyType(): ret_val = plt.ConstrData(plt.Integer(0), plt.EmptyDataList()) else: ret_val = plt.Unit() compiled_body = self.visit_sequence(body)(ret_val) return lambda x: plt.Let( [ ( node.name, plt.Lambda( [node.name] + [a.arg for a in node.args.args], compiled_body, ), ) ], x, )
def visit_If(self, node: TypedIf) ‑> Callable[[pluthon.pluthon_ast.AST], pluthon.pluthon_ast.AST]
-
Expand source code
def visit_If(self, node: TypedIf) -> typing.Callable[[plt.AST], plt.AST]: return lambda x: plt.Ite( self.visit(node.test), self.visit_sequence(node.body)(x), self.visit_sequence(node.orelse)(x), )
def visit_IfExp(self, node: TypedIfExp) ‑> pluthon.pluthon_ast.AST
-
Expand source code
def visit_IfExp(self, node: TypedIfExp) -> plt.AST: return plt.Ite( self.visit(node.test), self.visit(node.body), self.visit(node.orelse), )
def visit_List(self, node: TypedList) ‑> pluthon.pluthon_ast.AST
-
Expand source code
def visit_List(self, node: TypedList) -> plt.AST: assert isinstance(node.typ, InstanceType) assert isinstance(node.typ.typ, ListType) l = empty_list(node.typ.typ.typ) for e in reversed(node.elts): l = plt.MkCons(self.visit(e), l) return l
def visit_ListComp(self, node: TypedListComp) ‑> pluthon.pluthon_ast.AST
-
Expand source code
def visit_ListComp(self, node: TypedListComp) -> plt.AST: assert len(node.generators) == 1, "Currently only one generator supported" gen = node.generators[0] assert isinstance(gen.iter.typ, InstanceType), "Only lists are valid generators" assert isinstance(gen.iter.typ.typ, ListType), "Only lists are valid generators" assert isinstance( gen.target, Name ), "Can only assign value to singleton element" lst = self.visit(gen.iter) ifs = None for ifexpr in gen.ifs: if ifs is None: ifs = self.visit(ifexpr) else: ifs = plt.And(ifs, self.visit(ifexpr)) map_fun = plt.Lambda( [gen.target.id], self.visit(node.elt), ) empty_list_con = empty_list(node.elt.typ) if ifs is not None: filter_fun = plt.Lambda( [gen.target.id], ifs, ) return plt.MapFilterList( lst, filter_fun, map_fun, empty_list_con, ) else: return plt.MapList( lst, map_fun, empty_list_con, )
def visit_Module(self, node: TypedModule) ‑> pluthon.pluthon_ast.AST
-
Expand source code
def visit_Module(self, node: TypedModule) -> plt.AST: # find main function # TODO can use more sophisiticated procedure here i.e. functions marked by comment main_fun: typing.Optional[InstanceType] = None for s in node.body: if isinstance(s, FunctionDef) and s.name == self.validator_function_name: main_fun = s assert ( main_fun is not None ), f"Could not find function named {self.validator_function_name}" main_fun_typ: FunctionType = main_fun.typ.typ assert isinstance( main_fun_typ, FunctionType ), f"Variable named {self.validator_function_name} is not of type function" # check if this is a contract written to double function enable_double_func_mint_spend = False if len(main_fun_typ.argtyps) >= 3 and self.force_three_params: # check if is possible second_last_arg = main_fun_typ.argtyps[-2] assert isinstance( second_last_arg, InstanceType ), "Can not pass Class into validator" if isinstance(second_last_arg.typ, UnionType): possible_types = second_last_arg.typ.typs else: possible_types = [second_last_arg.typ] if any(isinstance(t, UnitType) for t in possible_types): _LOGGER.warning( "The redeemer is annotated to be 'None'. This value is usually encoded in PlutusData with constructor id 0 and no fields. If you want the script to double function as minting and spending script, annotate the second argument with 'NoRedeemer'." ) enable_double_func_mint_spend = not any( (isinstance(t, RecordType) and t.record.constructor == 0) or isinstance(t, UnitType) for t in possible_types ) if not enable_double_func_mint_spend: _LOGGER.warning( "The second argument to the validator function potentially has constructor id 0. The validator will not be able to double function as minting script and spending script." ) body = node.body + [ TypedReturn( value=Name( id=self.validator_function_name, typ=InstanceType(main_fun_typ), ctx=Load(), ), typ=InstanceType(main_fun_typ), ) ] validator = plt.Lambda( [f"p{i}" for i, _ in enumerate(main_fun_typ.argtyps)], transform_output_map(main_fun_typ.rettyp)( plt.Let( [ ( "val", self.visit_sequence(body)( plt.ConstrData(plt.Integer(0), plt.EmptyDataList()) ), ), ], plt.Apply( plt.Var("val"), plt.Var("val"), *[ transform_ext_params_map(a)(plt.Var(f"p{i}")) for i, a in enumerate(main_fun_typ.argtyps) ], ), ), ), ) if enable_double_func_mint_spend: validator = wrap_validator_double_function( validator, pass_through=len(main_fun_typ.argtyps) - 3 ) elif self.force_three_params: # Error if the double function is enforced but not possible raise RuntimeError( "The contract can not always detect if it was passed three or two parameters on-chain." ) cp = plt.Program((1, 0, 0), validator) return cp
def visit_Name(self, node: TypedName) ‑> pluthon.pluthon_ast.AST
-
Expand source code
def visit_Name(self, node: TypedName) -> plt.AST: # depending on load or store context, return the value of the variable or its name if not isinstance(node.ctx, Load): raise NotImplementedError(f"Context {node.ctx} not supported") if isinstance(node.typ, ClassType): # if this is not an instance but a class, call the constructor return node.typ.constr() return plt.Var(node.id)
def visit_NoneType(self, _: Optional[Any]) ‑> pluthon.pluthon_ast.AST
-
Expand source code
def visit_NoneType(self, _: typing.Optional[typing.Any]) -> plt.AST: return plt.Unit()
def visit_Pass(self, node: TypedPass) ‑> Callable[[pluthon.pluthon_ast.AST], pluthon.pluthon_ast.AST]
-
Expand source code
def visit_Pass(self, node: TypedPass) -> typing.Callable[[plt.AST], plt.AST]: return lambda x: x
def visit_RawPlutoExpr(self, node: RawPlutoExpr) ‑> pluthon.pluthon_ast.AST
-
Expand source code
def visit_RawPlutoExpr(self, node: RawPlutoExpr) -> plt.AST: return node.expr
def visit_Return(self, node: TypedReturn) ‑> Callable[[pluthon.pluthon_ast.AST], pluthon.pluthon_ast.AST]
-
Expand source code
def visit_Return(self, node: TypedReturn) -> typing.Callable[[plt.AST], plt.AST]: # Throw away the term we were passed, this is going to be the last! compiled_return = self.visit(node.value) if isinstance(node.typ.typ, AnyType): # if the function returns generic data, wrap the function return value compiled_return = transform_output_map(node.value.typ)(compiled_return) return lambda _: compiled_return
def visit_Subscript(self, node: TypedSubscript) ‑> pluthon.pluthon_ast.AST
-
Expand source code
def visit_Subscript(self, node: TypedSubscript) -> plt.AST: assert isinstance( node.value.typ, InstanceType ), "Can only access elements of instances, not classes" if isinstance(node.value.typ.typ, TupleType): assert isinstance( node.slice, Constant ), "Only constant index access for tuples is supported" assert isinstance( node.slice.value, int ), "Only constant index integer access for tuples is supported" index = node.slice.value if index < 0: index += len(node.value.typ.typ.typs) assert isinstance(node.ctx, Load), "Tuples are read-only" return plt.FunctionalTupleAccess( self.visit(node.value), index, len(node.value.typ.typ.typs), ) if isinstance(node.value.typ.typ, PairType): assert isinstance( node.slice, Constant ), "Only constant index access for pairs is supported" assert isinstance( node.slice.value, int ), "Only constant index integer access for pairs is supported" index = node.slice.value if index < 0: index += 2 assert isinstance(node.ctx, Load), "Pairs are read-only" assert ( 0 <= index < 2 ), f"Pairs only have 2 elements, index should be 0 or 1, is {node.slice.value}" member_func = plt.FstPair if index == 0 else plt.SndPair # the content of pairs is always Data, so we need to unwrap member_typ = node.typ return transform_ext_params_map(member_typ)( member_func( self.visit(node.value), ), ) if isinstance(node.value.typ.typ, ListType): assert ( node.slice.typ == IntegerInstanceType ), "Only single element list index access supported" return plt.Let( [ ("l", self.visit(node.value)), ( "raw_i", self.visit(node.slice), ), ( "i", plt.Ite( plt.LessThanInteger(plt.Var("raw_i"), plt.Integer(0)), plt.AddInteger( plt.Var("raw_i"), plt.LengthList(plt.Var("l")) ), plt.Var("raw_i"), ), ), ], plt.IndexAccessList(plt.Var("l"), plt.Var("i")), ) elif isinstance(node.value.typ.typ, DictType): dict_typ = node.value.typ.typ if not isinstance(node.slice, Slice): return plt.Let( [ ( "key", self.visit(node.slice), ) ], transform_ext_params_map(dict_typ.value_typ)( plt.SndPair( plt.FindList( self.visit(node.value), plt.Lambda( ["x"], plt.EqualsData( transform_output_map(dict_typ.key_typ)( plt.Var("key") ), plt.FstPair(plt.Var("x")), ), ), plt.TraceError("KeyError"), ), ), ), ) elif isinstance(node.value.typ.typ, ByteStringType): if not isinstance(node.slice, Slice): return plt.Let( [ ( "bs", self.visit(node.value), ), ( "raw_ix", self.visit(node.slice), ), ( "ix", plt.Ite( plt.LessThanInteger(plt.Var("raw_ix"), plt.Integer(0)), plt.AddInteger( plt.Var("raw_ix"), plt.LengthOfByteString(plt.Var("bs")), ), plt.Var("raw_ix"), ), ), ], plt.IndexByteString(plt.Var("bs"), plt.Var("ix")), ) elif isinstance(node.slice, Slice): return plt.Let( [ ( "bs", self.visit(node.value), ), ( "raw_i", self.visit(node.slice.lower), ), ( "i", plt.Ite( plt.LessThanInteger(plt.Var("raw_i"), plt.Integer(0)), plt.AddInteger( plt.Var("raw_i"), plt.LengthOfByteString(plt.Var("bs")), ), plt.Var("raw_i"), ), ), ( "raw_j", self.visit(node.slice.upper), ), ( "j", plt.Ite( plt.LessThanInteger(plt.Var("raw_j"), plt.Integer(0)), plt.AddInteger( plt.Var("raw_j"), plt.LengthOfByteString(plt.Var("bs")), ), plt.Var("raw_j"), ), ), ( "drop", plt.Ite( plt.LessThanEqualsInteger(plt.Var("i"), plt.Integer(0)), plt.Integer(0), plt.Var("i"), ), ), ( "take", plt.SubtractInteger(plt.Var("j"), plt.Var("drop")), ), ], plt.Ite( plt.LessThanEqualsInteger(plt.Var("j"), plt.Var("i")), plt.ByteString(b""), plt.SliceByteString( plt.Var("drop"), plt.Var("take"), plt.Var("bs"), ), ), ) raise NotImplementedError( f'Could not implement subscript "{node.slice}" of "{node.value}"' )
def visit_Tuple(self, node: TypedTuple) ‑> pluthon.pluthon_ast.AST
-
Expand source code
def visit_Tuple(self, node: TypedTuple) -> plt.AST: return plt.FunctionalTuple(*(self.visit(e) for e in node.elts))
def visit_UnaryOp(self, node: TypedUnaryOp) ‑> pluthon.pluthon_ast.AST
-
Expand source code
def visit_UnaryOp(self, node: TypedUnaryOp) -> plt.AST: opmap = UnaryOpMap.get(type(node.op)) assert opmap is not None, f"Operator {type(node.op)} is not supported" op = opmap.get(node.operand.typ) assert ( op is not None ), f"Operator {type(node.op)} is not supported for type {node.operand.typ}" return op(self.visit(node.operand))
def visit_sequence(self, node_seq: List[typedstmt]) ‑> Callable[[pluthon.pluthon_ast.AST], pluthon.pluthon_ast.AST]
-
Expand source code
def visit_sequence( self, node_seq: typing.List[typedstmt] ) -> typing.Callable[[plt.AST], plt.AST]: def g(s: plt.AST): for n in reversed(node_seq): compiled_stmt = self.visit(n) s = compiled_stmt(s) return s return g